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ABSTRACT 
 
CFD simulations of a top-tensioned riser experiencing VIV and varying 
axial tensions are conducted through viv-FOAM-SJTU solver. The 
varying tension reflects the effect of heave motions of the platform. 
Strip method is used to simplify the calculation and PimpleDyMFoam 
module in OpenFOAM is used to solve the fluid field. When the axial 
tension changes over time, natural frequencies changes over time 
leading to the changes of VIV response. Internal resonance of the first 
mode has great impact on the in-line vibration. The multi-modal 
vibration and modal transitions are illustrated in the simulations. 
 
KEY WORDS:  Vortex-induced vibration; viv-FOAM-SJTU solver; 
strip theory; varying tension; modal analysis 
 
INTRODUCTION 
 
Vortex-Induced Vibration(VIV) of marine risers has been receiving 
many attentions for decades. The riser is the weakest part in the 
production system connecting between the platform at the surface and 
the well at the seabed. VIV is a typical problem of fluid-structure 
interaction. Vortices generates and sheds alternately from both sides of 
the riser leading to a periodic vortex-induced pressure around the riser. 
The riser vibrates under the effect of the pressure and the vibration also 
affects the flow field around. When the vibration frequency is close to 
the natural frequency of the riser, “lock-in” phenomenon is usually 
observed with violent vibration. VIV has become the main source of 
fatigue damage of the riser. Therefore, it is important to predict the VIV 
response accurately. 
 
For the VIV problem, many previous works have been done in this 
field. Some reviews have summarized the research progress in the past 
decades including computational model, vibration characteristics and 
mechanisms of the vibration (Wan and Duan, 2017; Williamson and 
Govardhan, 2004; Wu et al, 2011). Many factors have influences on the 
VIV response, such as current profiles, aspect ratio and top tensions. 
Besides, effect of platform motions cannot be ignored, especially for 
floating structures.  

 
Traditionally, a fixed platform has only small amplitude of motions 
while a floating structure may have relatively large motions over a long 
period limited by mooring systems. Effects of the platform motions can 
be divided into two aspects: motions horizontally and motions 
vertically. It should be noted that effects of heave motions of the 
platform are different for different kinds of risers. For a steel catenary 
riser(SCR), most parts are declining and are not vertical to the surface. 
Heave motions of the platform generates relatively oscillatory flow 
between the riser and water. For a top-tensioned riser, it is nearly 
vertical to the horizontal plane from the surface to the seabed, as shown 
in Figure 1. The platform relates to the riser by a heave-compensator 
acting as a spring. The stiffness of the spring is much smaller than the 
axial stiffness of the riser and the top displacement of the riser is small 
and can be ignored at a model scale. Therefore, influences of a heaving 
platform to a top-tensioned riser can be simplified as the influences of 
the varying axial tensions.  
 
It should be noted that the structural nonlinearity should be focused in 
the engineering practice, especially for risers with real scale and large 
aspect ratio. In the real sea conditions, heave displacements of the 
platform cannot be ignored. Heave motions of the platform can have 
resonance with horizontal vibrations in both in-line and cross-flow 
directions for a riser with real scale. This phenomenon has been studied 
by Chung and Whitney (1981) and examples of coupling of axial-
bending has been illustrated by Chung and Cheng (1996). For a top-
tensioned riser with real scale, the pre-tension need to be large enough 
to keep the riser from buckling at the bottom because of the self-weight. 
However, the too large pre-tension may cause deformation at the upper 
part of the riser. This contradiction is one of the reasons that limits the 
further application of top-tensioned risers in extra deep oceans. 
 
In this paper, as the riser is in model scale, heave resonance and the 
effect of coupling are ignored. The top tension changes periodically and 
is a parametric excitation of the riser model. They are quite different 
problems. Axial varying tensions caused by the heave motion of the 
platform is the focus in this paper. 
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Fig. 1 Computational model: (a) refers to the sketch map of the top-
tensioned riser connected with the platform; (b) refers to the simplified 
beam model simply supported at both ends. 
 
Under the axial varying tension, VIV of the riser is exacerbated and is 
plagued with stability problem. Kuiper et al. (2008) made discussion to 
the parametric instability problem through the Strutt diagram and 
divided the problem into different cases according to different 
instability mechanisms. Under extremely large heave motions of the 
platform, axial tension at the bottom of the riser changes into 
compression and local buckling may appear. Different mechanisms 
should be analyzed separately. 
 
Zhang and Tang (2015) performed numerical simulations on the VIV of 
the top-tensioned riser considering the time-varying axial tension. In 
the process of “up and down”, the heaving platform has larger effect in 
the “down” period than the “up” period. Under the effect of varying 
tensions, the stiffness of the riser changes over time and thus, the 
natural frequency changes over time. Changes of natural characteristics 
are key problems to analyzing this problem. 
 
Chen et al. (2014) focused the vibration process and built numerical 
model through finite element model to simulate the VIV of the riser 
considering the parametric excitation. Results proved that internal 
resonance existed. The riser model had larger vibration responses under 
coupled VIV and varying tensions than the cases with only VIV or only 
varying tensions. Modal transitions appeared from the high mode to the 
low mode. 
 
Yuan (2018) improved the empirical VIV model originated from Wang 
(2013) by updating the structural stiffness matrix at each time step. 
Accuracy of the model was verified by comparing with experiments. 
Numerical analysis was conducted in time domain. Several new 
phenomena such as amplitude modulation, time-lag, frequency 
transition, mode jump and multi-frequencies response superposition are 
captured in the response comparison with the constant tension case 
 
Previous researches mainly focus on the stability problem, while the 
study of the vibration process is not enough. Under the heave motions 
of the platform, VIV of the riser is enlarged leading to severer fatigue 
damage to the riser. It is important to have deeper understanding on the 
VIV of a top-tensioned riser with varying axial tensions. As mentioned 
above, when the axial tension changes over time, natural frequency 
changes over time. However, the main vibrations mode is determined 
by natural frequency and Strouhal frequency. An interesting 
phenomenon appears that the main vibration mode changes over time 
caused by the varying natural frequency. 
 
Based on the analysis above, the present paper is organized as follows. 
The following section will introduce the numerical method adopted to 
solve the VIV problem under the axial varying tensions. Then, the 
Section PROBLEM will introduce the details of the problem discussed 
in this paper including computational models and cases. The Section 

RESULTS followed by Section PROBLEM will compare the 
differences between the vibration with and without varying tension. 
The process of “up and down” of the varying tension and modal 
transition are discussed. Finally, conclusions are made and prospects 
are proposed. 
 
NUMERICAL METHOD 
 
In this paper, numerical simulations of the VIV and parametric 
vibration of the top-tensioned riser are conducted by the in-house CFD 
code, viv-FOAM-SJTU solver. It is developed based on the open 
source CFD software OpenFOAM. 
 
Computation of Fluid Fields 
 
In the viv-FOAM-SJTU solver, the fluid fields are supposed to be 
incompressible. Dynamic viscosity μ  and the density ρ  remains the 
same during the simulations. The Reynolds-Averaged Navier-Stokes 
(RANS) equations are solved numerically. 
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where ijS  refers to the tensor of time-average strain rate and ' 'j iu uρ−  
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1
2

ji
ij

j i

uuS
x x

 ∂∂= +  ∂ ∂ 
                                                                                  (3) 

 
The tensor of Reynolds stress is a new term caused by fluctuation 
velocity representing the effect of turbulence. SST k- ω  turbulence 
model is introduced to solve the problem. 
 
Equations are solved using finite volume method (FVM) adopting non-
staggered grid which save variable information at the center of the grids. 
Pimple algorithm is used to decouple the velocity and pressure field. 
Flow field is solved invoking PimpleDyMFoam solver provided by 
OpenFOAM. To fit the large displacements of the problem, dynamic 
mesh module in OpenFOAM is used. 
 
Computation of Structure Fields 
 
Simulation of the riser model is based on Euler-Bernoulli beam theory. 
The beam model is simply supported at both ends. Dynamic 
characteristics are simulated through the structural dynamic equations 
which are a set of second-order ordinary differential equations in two 
directions (Eq. 4~5). 
 

{ } { } { } { }x x x xM u C u K u F        + + =                                                    (4) 

{ } { } { } { }y y y yM u C u K u F        + + =                                                   (5) 
 
The model is discretized by finite element method (FEM). In this paper, 
riser model is divided into eighty units. The unit stiffness matrix eK  
has two parts: unit elastic stiffness matrix e

EK  and unit geometry 
stiffness matrix e

GK . T refers to the axial tension on the riser and can be 
expresses as follows. 
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( ) ( ) ( ), sin 2t sT z t T L z A f tω π= − − + ⋅                                                (7) 
 
The first term in the expression, tT , refers to the pre-tension. The 
second term reflects the spatially-varying tension caused by self-
weights and buoyancy. The third term refers to the time-varying tension 
induced by heave motions of the platform. 
 
Calculation of damping adopts the Rayleigh damping model (Clough 
2003) as shown in the Eq. 8~9. The coefficients α  and β  can be 
calculated by the first two order of natural frequencies 1nf  and 2nf . 
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The structural dynamic equations are solved by Newmark-beta method. 
 
Strip Method and Fluid-Structure Interaction 
 
Strip model is applied in the viv-FOAM-SJTU solver instead of three-
dimensional riser model. Direct simulation of the three-dimensional 
flow field in time domain through CFD method is sure to be accurate 
but is hard to achieve and will cost too many resources. Instead, the 
simplified quasi three-dimensional model, the strip method, is widely 
used in the simulation of long flexible riser. It is very appropriate for 
solving CFD simulations of marine risers with high efficiency. Several 
strips are set to be equally distributed along the riser and each strip 
contains a two-dimensional circular cylinder. Schematic diagram of the 
strip method is illustrated in Fig. 2. 
 

 
 
Fig. 2 Explanation of the strip model and fluid-structure interaction 
 
In each strip, hydrodynamics of 2D flow around a circular cylinder are 
calculated through CFD. The fluid forces obtained from the strip can be 
regarded as forces on the cylinder in the corresponding region. Mapped 
to the nodes of the structural model, continuous forces distribution on 
the cylinder are obtained through interpolation and vibration responses 
are solved by Newmark-beta method. Displacements and velocities of 
the structure model are transmitted to the corresponding strip to update 
the flow field and the dynamic mesh. The next time step is ready to be 

solved. 
 
The strip method is an appropriate way for solving CFD simulations of 
supramaximal computational domain. It owns high computational 
efficiency and the computational accuracy is reliable, which has been 
verified through related researches (Willden and Graham, 2004; 
Yamamoto et al., 2004). The number of strips is expected to be more 
than three times of the vibration modes of the riser (Willden and 
Graham, 2004). The vibration mode can be estimated by calculating the 
Strouhal frequency and the natural frequencies. The first natural 
frequency that exceed the Strouhal frequency is approximately the 
vibration frequency. In this paper, 20 strips are used in the calculation. 
The whole structure of the viv-FOAM-SJTU solver is shown in Fig. 3. 
 

 
 
Fig. 3 Block Diagram of the viv-FOAM-SJTU solver 
 
Modal Analysis 
 
A method of modal analysis is used to decompose the displacements of 
the riser vibration in both in-line and cross-flow directions following 
Lie and Kaasen (2006). The displacements can be regarded to be 
composed by displacements of several modes related to the natural 
frequencies. Through the modal decomposition, the results can be more 
intuitive. 
 
At each time step, the equation is established as Eq. 10. 
 

( ) ( ) ( ), ,y z t z t tϕ ω=                                                                               (10) 
 
where ( )tω  refers to the vector of modal weights and  ( ),y z t  is the 
vector of modal displacements. ( ),z tϕ  represents the matrix of modal 
shapes. In this paper, the modal weights are solved using the least-
square method at each time step. 
 
PROBLEM 
 
The computational model used in this paper follows the experiment of 
Chaplin et al. (2005). Main parameters are listed in Table 2. 
 
Table 2. Main parameters of the computational model 
 

Parameter Symbol Value Unit 
Diameter D 0.028 m 
Length L 14 m 

Mass Ratio m* 2.4 - 
Bending Stiffness EI 29.88 N·m²

Flow Speed U 0.4 m/s 
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Static Top Tension Tt 1610 N 
Varying Tension Amplitude A 0/500 N 
Varying Tension Frequency f 1.1410/3.4367 Hz 

 
Table3. Parameters for cases 
 

Case No. Pre-Tension (N) Varying Tension 
Amplitude (N) 

Varying Tension 
Frequency (Hz)

Case 1 1610 0 0 
Case 2 1610 500 1.1410 

 
In the experiment, the riser model is placed in the stepped flow. The 
lower 45% part is subject to uniform flow while the upper part is in the 
still water. Layout of the experiment is shown in Fig. 4. Numerical 
validation following this experiment has been done by Duan et al. 
(2016) and error of the maximum displacements is within 10%. It 
should be noted that the riser model is subject to a stepped flow in the 
experiment while in this paper, the uniform flow is adopted in the 
numerical simulations. 
 

 
 
Fig. 4 Layout of the experiments and results comparisons (Chaplin et al, 
2005; Duan et al, 2016) 
 
Validity and reliability of the viv-FOAM-SJTU solver has been verified 
in several papers (Duan et al, 2016; Fu and Wan, 2017; Fu et al, 2018) 
and would not be discussed here limited by the length of the paper. 
 
In this paper, effects of the heave motion are reflected as the time-
varying axial tension along the riser model. Two cases are used totally 
in this paper: one case with constant tension as a comparison, and one 
case with varying tension. The pre-tension is set to be 1610 N. 
 
Twenty strips are set equidistantly along the riser with the same 
computational domain. Details of the strip model and the initial mesh 
are shown in Fig. 5. Total number of grids is 42000 and y+ is 2.5. The 
height of the first layer is 0.000716 meters. 
 

  
 
Fig. 5 Strip model and the initial mesh on each strip. 
 
 

RESULTS 
 
In this section, numerical simulations of the three cases are performed 
through viv-FOAM-SJTU solver. The calculations are performed on 
the parallel cluster in Shanghai Jiao Tong University. The time step is 
set to be 0.0005s to ensure that the maximum Courant number is less 
than 1. 
 
Natural Characteristics 
 
As mentioned above, modal analysis is used in this paper to distinguish 
the modal transition during the vibration. Therefore, natural frequencies 
and the natural modes are needed at first. Under the parameters listed in 
table 2, the first four-order natural frequencies and natural modes are 
obtained. The natural frequencies are listed in table 4 and the natural 
modes are shown in Fig. 6. 
 
Table 4. The first four natural frequencies of the riser model 
 

No. f1 f2 f3 f4 
f (Hz) 1.1410 2.2854 3.4367 4.5982 

 

 
 
Fig. 6 The first four natural modes of the riser model 
 
VIV of the Top-Tensioned Riser with Varying Tensions 
 
Numerical results of the two cases are shown in Fig. 7~11. As 
mentioned in the Section PROBLEM, the first case is a VIV problem 
with constant tension and is chosen as a comparison. The second case is 
VIV of a top-tensioned riser with time-varying tension. The frequency 
of the varying tension is 1.1410Hz, namely the first order natural 
frequency. 
 
Fig. 7 compares the standard deviation between the two cases in both 
in-line and cross-flow directions. For the in-line vibration, effect of the 
varying tension is obvious. The maximum STD displacements is about 
0.1 for Case 1 and over 0.6 for Case 2. This can be explained from two 
aspects. For one reason, the varying tension can be regarded as a kind 
of “disturbance”. The added dynamic energy acquired from the varying 
tension exacerbates the VIV response of the riser model. As mentioned 
above, characteristics of the VIV response is correlated to its natural 
frequencies. Under the effect an axial varying tension, the natural 
frequencies change over time. Therefore, it can hardly enter the stable 
state.  
 
For another reason, existence of the internal resonance lead to the 
differences between the two cases. In the in-line vibration, the riser 
appears as an arc under the effect of uniform flow, the shape of which 
is similar to the first mode related to the first order natural frequency. 
When the tension varies at the frequency of the first order, it inspires 
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the internal resonances. Therefore, an obvious amplification is observed 
in the Fig. 7(a). 
 
For the cross-flow vibration, the amplification effect is little, as shown 
in Fig. 7(b). This is reasonable because there is no internal resonance 
for the cross-flow vibration. 
 

           
(a)                                     (b) 

Fig. 7 Standard Deviation of the displacements: (a) stands for the in-
line vibration; (b) stands for the cross-flow vibration 
 
Fig. 8~9 show the comparisons of power spectral density of each mode 
and displacements at several places along the riser model in in-line 
direction. The frequency component is obtained through FFT algorithm. 
It should be noted that results in Fig. 8 is calculated by ignoring the 
first mode. The first mode cannot be shown with other modes in the 
same figure because the varying tension dominates the in-line vibration 
as explained in Fig. 7. If all the modes are shown in the same figure, no 
frequency component except 1.1410 Hz appears in the figure. 
 
Under the effect of the varying tension, multi-modal vibrations are 
inspired. Previous researches have shown that a long flexible cylinder 
tends to vibrate at various modes (Willden and Graham, 2004; 
Vandiver et al, (2009)). The varying tension inspires the multi-modal 
vibration of the riser model. The frequency component at the third 
mode equals to the frequency of the varying tension. 
 
Fig. 9 shows the power spectral density figure of the in-line vibration at 
different places along the riser model. Fig. 9(b) shows that the 
frequency component of the varying tension appears mainly at the 
middle parts of the riser while in Fig. 9(a), results is consistent with the 
vibration mode. 
 

           
(a) Case1                                     (b) Case2 

 
Fig. 8 Comparison of modal power spectral density between case 1 and 

case 2 in the in-line direction. 
 

           
(a) Case1                                   (b) Case2 

 
Fig. 9 Comparison of power spectral density between case 1 and case 2 
in the in-line direction. 
 
Fig. 10~11 show the comparisons in cross-flow direction. Effects of the 
varying tension are not the same as the in-line vibration. The sub-
harmonic vibration appears in the first mode (Fig. 10) and in the middle 
part of the riser (Fig. 11) which is a typical phenomenon in the 
parametric excitations. It reflects the nonlinearity of the system.  
 
Similar to the in-line vibration, more frequency components appear in 
the power spectral density figure. However, it is different that the 
varying tension do not dominate the vibration frequency. The original 
VIV frequency components are still obvious. 
 
Another phenomenon that should be noticed is the width of the 
frequency component. In Fig. 11(a), the frequency of VIV is obvious 
with only one peak. In Fig. 11(b), except for the sub-harmonic 
components in the middle part of the riser, the original VIV 
components become wider with several peaks. One possible 
explanation lies on the continuous varying tension. When the axial 
tension is constant, the vortex-induced vibration is stable related to the 
axial tension. When the tension changes continuous over time, the 
related frequency component changes. Therefore, a wider response 
spectrum is obtained. 
 

           
(a) Case1                                     (b) Case2 

 
Fig. 10 Comparison of modal power spectral density between case 1 
and case 2 in the cross-flow direction. 
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(a) Case1                                     (b) Case2 

 
Fig. 11 Comparison of power spectral density between case 1 and case 
2 in the cross-flow direction. 
 
Modal Transition 
 
In this section, the phenomenon of modal transition is recognized 
through the wavelet transformation (Fig. 12) and the spatial-temporal 
contour (Fig. 14). 
 
In the previous section, numerical results obtained by FFT are 
discussed in detail. Disadvantages of the results are obvious that they 
can only reflect the frequency component from the data. The vibration 
frequency at each time cannot be reflected. Therefore, the wavelet 
transformation is used to recognize the vibration frequency and the 
vibration mode at each time. 
 
As shown in Fig. 12(a), the wavelet contour reflects the vibration 
frequency component at each time step. To be clearer, the main 
vibration frequency at each time is picked up and is shown in Fig. 12(b). 
The first four order natural frequencies are marked on the figure. From 
the Fig. 12, conclusions can be made that the vibration covers the first 
four order natural frequencies.  
 
At any time, if the energy covers more than one order of the natural 
frequency, modal transition happens at that time. Four typical time is 
chosen to illustrate the process of modal transition as shown in Fig. 13. 
Four typical time is: 23~25 s, 43~45 s, 52~54 s and 57~59 s. At first 
three time, energies in Fig. 12(a) cover more than one natural 
frequencies, while at fourth time, the energy only cover the third mode 
natural frequency. A clear third mode is shown in the fourth figure in 
Fig. 13. 
 

 
(a)                                                (b) 

 
Fig. 12 Wavelet contour and the main vibration frequency in the cross-
flow direction. 
 

 
Fig. 13 Four typical time chosen to illustrate the process of the modal 
transition. 
 
Besides the wavelet transformation, the spatial-temporal contour is 
more convenient and intuitive to show the modal transitions. The 
contour within 23.5~25.25 s is shown in Fig. 14. It reflects the vibration 
shapes at each time and how the vibration evolves. The horizontal 
coordinate refers to time and the vertical coordinate represents the 
length along the riser model. At the time right after 23.5 s, the riser 
vibrates at the fifth mode and it changes into fourth mode before 24 s. 
After 24 s, the main vibration mode changes into the third mode and 
standing waves appears in the contour after 24.5 s which is related to 
the “lock-in” phenomenon of vortex-induced vibration. 
 

 
 
Fig. 14 Spatial-temporal contour within 23.5~25.25 s of cross-flow 
vibration. 
 
Noticed that in this section, analysis above is made based on the results 
of cross-flow vibration shown in Fig. 12~14. Reason is that as shown in 
the last section, the vibration frequency is dominated by the varying 
tension (Fig. 9(b)). The phenomenon of modal transition mainly 
happens at cross-flow vibration. Wavelet contour of the in-line 
vibration is shown in Fig. 15. The varying tension dominates the 
vibration frequency powerfully. 
 

 
 
Fig. 15 Wavelet contour of the in-line vibration 
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Periodic Vibration 
 
In this section, the process of varying tension is shown with spatial-
temporal contour. The vibration behavior is analyzed in time-domain. 
Fig. 16 shows the contour of in-line vibration from 20.0 s to 23.5 s. The 
axial tension varies at the frequency of the first order natural frequency 
and is relatively slow related to the system. The periodic vibration 
response is obvious in the in-line vibration. When the tension turns to 
larger and smaller, displacements of the in-line vibration change 
accordingly. The effect of reduction process is larger than the 
enlargement process. 
 

 
 
Fig. 16 Spatial-temporal contour of the in line-vibration in Case2 
 
Fig. 17 shows the contour of the cross-flow vibration from 23.5 s to 
27.0 s. The time history curve is shown together with the contour. 
Three kinds of typical vibration response appear in this period 
including modal transition, stationary wave, and the travelling wave. 
The problem of modal transition has been discussed in the previous 
section. The stationary wave usually represents that “lock-in” happens, 
while the travelling wave is quite common for flexible riser with large 
aspect ratio.  
 

 
 
Fig. 17 Spatial-temporal contour of the cross-flow vibration in Case2 
 
 
CONCLUSIONS 
 
In this paper, numerical simulations of a top-tensioned riser 
experiencing vortex-induced vibration and varying axial tension is 
conducted by viv-FOAM-SJTU solver. Numerical methods adopted in 
the solver are introduced briefly. For a top-tensioned riser, the effect of 
heave motion of the platform can be regarded as a time-varying axial 
tension. When the axial tension changes over time, the bending 

stiffness changes over time leading to the changes of natural 
frequencies. Since most of the vibration characteristics are related to 
the natural characteristics, several changes happen. This is the core of 
this problem.  
 
When the frequency of varying tension equals to the first order natural 
frequency, internal resonance happens and the VIV response is 
exacerbated. Under the effects of varying tensions, more frequency 
components appear in the vibration. The multi-modal vibration is 
inspired and the modal transition happens. Through the comparisons in 
Fig. 8~11, different frequency components can be distinguished. The 
traditionally multi-modal vibration for flexible risers is different from 
the modal transition phenomenon in the case of varying tension. 
 
The process of modal transition is shown through wavelet 
transformation and spatial-temporal contour. Modal transition is 
obvious in the cross-flow vibration, while in the in-line vibration, the 
varying tension dominates the vibration frequency. Under the effect of 
the varying tension with low frequency, periodic vibration appears in 
the in-line direction (Fig. 15~16). 
 
Admittedly, the present work has considerable space to improve. 
Realization of the CFD simulation of VIV and effects of platform 
motions are the focus in the completed work. Up to now, numerical 
simulations are performed under a model scale. Risers with real scale 
can be explored by our solver in the future. Besides, effects of axial 
resonance are expected to be considered in the following papers. 
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